Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
EMBO Rep ; 25(3): 1256-1281, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429579

RESUMO

The plant homeodomain zinc-finger protein, PHF6, is a transcriptional regulator, and PHF6 germline mutations cause the X-linked intellectual disability (XLID) Börjeson-Forssman-Lehmann syndrome (BFLS). The mechanisms by which PHF6 regulates transcription and how its mutations cause BFLS remain poorly characterized. Here, we show genome-wide binding of PHF6 in the developing cortex in the vicinity of genes involved in central nervous system development and neurogenesis. Characterization of BFLS mice harbouring PHF6 patient mutations reveals an increase in embryonic neural stem cell (eNSC) self-renewal and a reduction of neural progenitors. We identify a panel of Ephrin receptors (EphRs) as direct transcriptional targets of PHF6. Mechanistically, we show that PHF6 regulation of EphR is impaired in BFLS mice and in conditional Phf6 knock-out mice. Knockdown of EphR-A phenocopies the PHF6 loss-of-function defects in altering eNSCs, and its forced expression rescues defects of BFLS mice-derived eNSCs. Our data indicate that PHF6 directly promotes Ephrin receptor expression to control eNSC behaviour in the developing brain, and that this pathway is impaired in BFLS.


Assuntos
Epilepsia , Face/anormalidades , Dedos/anormalidades , Transtornos do Crescimento , Hipogonadismo , Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Obesidade , Humanos , Camundongos , Animais , Deficiência Intelectual/genética , Proteínas Repressoras , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Fatores de Transcrição
2.
Methods Mol Biol ; 2515: 1-15, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35776342

RESUMO

Defects in mitochondrial oxidative phosphorylation have been observed in numerous neurodegenerative disorders and are linked to bioenergetic crises leading to neuronal death. The distinct metabolic profile of neurons is predominantly oxidative, which is characterized by the oxidation of glucose or its metabolites in the mitochondria to produce ATP. This process involves the tricarboxylic acid cycle, electron transfer in the respiratory chain, and oxygen consumption. Therefore, measurement of oxygen consumption rates (OCR) can be accurately applied to assess the rate of mitochondrial respiration. In this chapter, we describe our optimized protocol for the assessment of OCR specifically in primary mouse cerebellar granule neurons (CGN). The protocol includes isolation and manipulation of mouse CGNs followed by real-time assessment of mitochondrial OCR using a Seahorse XFe96 extracellular flux analyzer.


Assuntos
Respiração Celular , Mitocôndrias , Animais , Camundongos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Fosforilação Oxidativa , Respiração
3.
Methods Cell Biol ; 170: 47-58, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811103

RESUMO

Brain tumor stem cells (BTSCs) are a rare population of self-renewing stem cells that are cultured as spheres and are often slow growing compared to other mammalian cell lines. Analysis of BTSC proteome requires careful handling as well as techniques that can be applied to small quantities of cell material. Subcellular fractionation is a widely used technique to assess protein localization. Although proteins are often destined to a defined cell compartment via a signal peptide such as mitochondrial or nuclear localization signals, the recruitment of a protein from one compartment to another can occur as a result of post-translational modification and/or structural variations in response to intracellular and extracellular stimuli. These events assign different functions to a protein making the study of protein localization a useful approach for better understanding of its role in disease progression. Sequential centrifugation remains a simple and versatile fractionation method for proteomic analysis. It can also be applied for diverse downstream applications such as multi-omics using pure nuclear fractions or metabolomic studies on isolated mitochondria. In this chapter, we describe our optimized protocol for subcellular fractionation of BTSC spheres in which we use a commercially available kit with additional centrifugation steps. We provide details on BTSC maintenance and handling, fractionation protocol and evaluation of fraction purity.


Assuntos
Células-Tronco Neoplásicas , Proteômica , Animais , Encéfalo/metabolismo , Fracionamento Celular/métodos , Núcleo Celular/metabolismo , Mamíferos/metabolismo , Células-Tronco Neoplásicas/patologia , Proteoma/metabolismo , Proteômica/métodos , Frações Subcelulares/metabolismo
4.
STAR Protoc ; 3(3): 101554, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35880130

RESUMO

Improper or aberrant protein-protein interactions can lead to severe human diseases including cancer. Here, we describe an adapted proximity ligation assay (PLA) protocol for the assessment of galectin-1-HOXA5 interaction in brain tumor stem cells (BTSCs). We detail the steps for culturing and preparation of BTSCs followed by PLA and detection of protein interactions in situ using fluorescent microscopy. This PLA protocol is optimized specifically for BTSCs and includes key controls for effective result analysis. For complete details on the use and execution of this protocol, please refer to Sharanek et al. (2021).


Assuntos
Encéfalo , Mapeamento de Interação de Proteínas , Humanos , Microscopia de Fluorescência/métodos , Células-Tronco Neoplásicas , Mapeamento de Interação de Proteínas/métodos
5.
Cell Rep ; 36(9): 109647, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469737

RESUMO

Brain tumor stem cells (BTSCs) and intratumoral heterogeneity represent major challenges in glioblastoma therapy. Here, we report that the LGALS1 gene, encoding the carbohydrate binding protein, galectin1, is a key regulator of BTSCs and glioblastoma resistance to therapy. Genetic deletion of LGALS1 alters BTSC gene expression profiles and results in downregulation of gene sets associated with the mesenchymal subtype of glioblastoma. Using a combination of pharmacological and genetic approaches, we establish that inhibition of LGALS1 signaling in BTSCs impairs self-renewal, suppresses tumorigenesis, prolongs lifespan, and improves glioblastoma response to ionizing radiation in preclinical animal models. Mechanistically, we show that LGALS1 is a direct transcriptional target of STAT3 with its expression robustly regulated by the ligand OSM. Importantly, we establish that galectin1 forms a complex with the transcription factor HOXA5 to reprogram the BTSC transcriptional landscape. Our data unravel an oncogenic signaling pathway by which the galectin1/HOXA5 complex maintains BTSCs and promotes glioblastoma.


Assuntos
Neoplasias Encefálicas/metabolismo , Galectina 1/metabolismo , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transcrição Gênica , Idoso , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Calixarenos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Autorrenovação Celular , Receptores ErbB/genética , Receptores ErbB/metabolismo , Galectina 1/antagonistas & inibidores , Galectina 1/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/radioterapia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Mutação , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Tolerância a Radiação , Radiossensibilizantes/farmacologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
6.
EMBO Rep ; 21(12): e49499, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33047485

RESUMO

The function and maintenance of muscle stem cells (MuSCs) are tightly regulated by signals originating from their niche environment. Skeletal myofibers are a principle component of the MuSC niche and are in direct contact with the muscle stem cells. Here, we show that Myf6 establishes a ligand/receptor interaction between muscle stem cells and their associated muscle fibers. Our data show that Myf6 transcriptionally regulates a broad spectrum of myokines and muscle-secreted proteins in skeletal myofibers, including EGF. EGFR signaling blocks p38 MAP kinase-induced differentiation of muscle stem cells. Homozygous deletion of Myf6 causes a significant reduction in the ability of muscle to produce EGF, leading to a deregulation in EGFR signaling. Consequently, although Myf6-knockout mice are born with a normal muscle stem cell compartment, they undergo a progressive reduction in their stem cell pool during postnatal life due to spontaneous exit from quiescence. Taken together, our data uncover a novel role for Myf6 in promoting the expression of key myokines, such as EGF, in the muscle fiber which prevents muscle stem cell exhaustion by blocking their premature differentiation.


Assuntos
Fatores de Regulação Miogênica , Células-Tronco , Animais , Diferenciação Celular/genética , Homozigoto , Camundongos , Músculo Esquelético , Fatores de Regulação Miogênica/genética , Deleção de Sequência
7.
Nat Commun ; 11(1): 4116, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807793

RESUMO

Glioblastoma contains a rare population of self-renewing brain tumor stem cells (BTSCs) which are endowed with properties to proliferate, spur the growth of new tumors, and at the same time, evade ionizing radiation (IR) and chemotherapy. However, the drivers of BTSC resistance to therapy remain unknown. The cytokine receptor for oncostatin M (OSMR) regulates BTSC proliferation and glioblastoma tumorigenesis. Here, we report our discovery of a mitochondrial OSMR that confers resistance to IR via regulation of oxidative phosphorylation, independent of its role in cell proliferation. Mechanistically, OSMR is targeted to the mitochondrial matrix via the presequence translocase-associated motor complex components, mtHSP70 and TIM44. OSMR interacts with NADH ubiquinone oxidoreductase 1/2 (NDUFS1/2) of complex I and promotes mitochondrial respiration. Deletion of OSMR impairs spare respiratory capacity, increases reactive oxygen species, and sensitizes BTSCs to IR-induced cell death. Importantly, suppression of OSMR improves glioblastoma response to IR and prolongs lifespan.


Assuntos
Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Radiação Ionizante , Receptores de Oncostatina M/metabolismo , Animais , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Imunofluorescência , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Masculino , Camundongos , Camundongos SCID , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Células-Tronco Neoplásicas/efeitos da radiação , Oncostatina M/metabolismo , Estresse Oxidativo/efeitos da radiação , Receptores de Oncostatina M/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos da radiação
8.
Toxicol In Vitro ; 58: 51-59, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30876886

RESUMO

Many drugs can induce liver injury, characterized by hepatocellular, cholestatic or mixed hepatocellular-cholestatic lesions. While an inflammatory stress is known to aggravate hepatocellular injury caused by some drugs much less evidence exists for cholestatic features. In this study, the influence of pro-inflammatory cytokines (IL-6, IL-1ß and TNF-α), either individually or combined, on cytotoxic and cholestatic properties of antibiotics was evaluated using differentiated HepaRG cells. Six antibiotics of various chemical structures and known to cause cholestasis and/or hepatocellular injury in clinic were investigated. Caspase-3 activity was increased with all these tested hepatotoxic drugs and except with erythromycin, was further augmented in presence of cytokines mainly when these were co-added as a mixture. TNF-α and IL-1ß aggravated cytotoxicity of TVX more than IL-6. Bile canaliculi (BC) dilatation induced by cholestatic drugs was increased by co-treatment with IL-6 and IL-1ß but not with TNF-α. Reduced accumulation of carboxy-dichlorofluorescein, a substrate of the multi-drug resistance-associated protein 2, in antibiotic-induced dilatated BC, was further extended in presence of individual or mixed cytokines. In conclusion, our data demonstrate that pro-inflammatory cytokines either individually or in mixture, can modulate cholestatic and/or cytotoxic responses to antibiotics and that the extent of these effects is dependent on the cytokine and the cholestatic antibiotic.


Assuntos
Antibacterianos/efeitos adversos , Canalículos Biliares/efeitos dos fármacos , Colestase/induzido quimicamente , Citocinas/farmacologia , Canalículos Biliares/fisiologia , Proteína C-Reativa/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colestase/metabolismo , Fluoresceínas/metabolismo , Humanos
9.
Toxicol Sci ; 168(2): 474-485, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629237

RESUMO

Drug-induced cholestasis is mostly intrahepatic and characterized by alterations of bile canaliculi dynamics and morphology as well as accumulation of bile acids (BAs) in hepatocytes. However, little information exists on first changes in BA content and profile induced by cholestatic drugs in human liver. In this study, we aimed to analyze the effects of a large set of cholestatic and noncholestatic drugs in presence of physiological serum concentrations and 60-fold higher levels of 9 main BAs on cellular accumulation of BAs using HepaRG hepatocytes. BAs were measured in cell layers (cells + bile canaliculi) and culture media using high-pressure liquid chromatography coupled with tandem mass spectrometry after 24 h-treatment. Comparable changes in total and individual BA levels were observed in cell layers and media from control and noncholestatic drug-treated cultures: unconjugated BAs were actively amidated and lithocholic acid (LCA) was entirely sulfated. In contrast, cellular accumulation of LCA and in addition, of the 2 other hydrophobic BAs, chenodeoxycholic acid and deoxycholic acid, was evidenced only with cholestatic compounds in presence of BA mixtures at normal and 60-fold serum levels, respectively, suggesting that LCA was the first BA to accumulate. Cellular accumulation of hydrophobic BAs was associated with inhibition of their amidation and for LCA, its sulfation. In conclusion, these results demonstrated that cellular accumulation of unconjugated hydrophobic BAs can be caused by various cholestatic drugs in human hepatocytes and suggest that their cellular detection, especially that of LCA, could represent a new strategy for evaluation of cholestatic potential of drugs and other chemicals.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colestase/induzido quimicamente , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Biomarcadores/metabolismo , Colestase/metabolismo , Avaliação Pré-Clínica de Medicamentos , Hepatócitos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fígado/metabolismo , Preparações Farmacêuticas/química , Valor Preditivo dos Testes
10.
J Cell Physiol ; 234(1): 122-133, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30191979

RESUMO

Previous studies have shown that gut-derived bacterial endotoxins contribute in the progression of simple steatosis to steatohepatitis, although the mechanism(s) remains inaccurate to date. As hepatic stellate cells (HSC) play a pivotal role in the accumulation of excessive extracellular matrix (ECM), leading to collagen deposition, fibrosis, and perpetuation of inflammatory response, an in vitro model was developed to investigate the crosstalk between HSC and hepatocytes (human hepatoma cell) pretreated with palmitate. Bacterial lipopolysaccharide (LPS) stimulated HSC with phosphorylation of the p38 mitogen-activated protein kinase/NF-κB pathway, while several important pro-inflammatory cytokines were upregulated in the presence of hepatocyte-HSC. Concurrently, fibrosis-related genes were regulated by palmitate and the inflammatory effect of endotoxin where cells were more exposed or sensitive to reactive oxygen species (ROS). This interaction was accompanied by increased expression of the mitochondrial master regulator, proliferator-activated receptor gamma coactivator alpha, and a cytoprotective effect of the agent N-acetylcysteine suppressing ROS production, transforming growth factor-ß1, and tissue inhibitor of metalloproteinase-1. In summary, our results demonstrate that pro-inflammatory mediators LPS-induced promote ECM rearrangement in hepatic cells transcriptionally committed to the regulation of genes encoding enzymes for fatty acid metabolism in light of differences that might require an alternative therapeutic approach targeting ROS regulation.


Assuntos
Comunicação Celular/genética , Fígado Gorduroso/genética , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Comunicação Celular/efeitos dos fármacos , Citocinas/genética , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Fígado Gorduroso/microbiologia , Fígado Gorduroso/patologia , Fibrose/genética , Fibrose/patologia , Células Estreladas do Fígado/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Lipopolissacarídeos/toxicidade , Palmitatos/farmacologia , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Fator de Crescimento Transformador beta1/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
11.
Free Radic Biol Med ; 115: 166-178, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191461

RESUMO

Endoplasmic reticulum (ER) stress has been associated with various drug-induced liver lesions but its participation in drug-induced cholestasis remains unclear. We first aimed at analyzing liver damage caused by various hepatotoxic antibiotics, including three penicillinase-resistant antibiotics (PRAs), i.e. flucloxacillin, cloxacillin and nafcillin, as well as trovafloxacin, levofloxacin and erythromycin, using human differentiated HepaRG cells and primary hepatocytes. All these antibiotics caused early cholestatic effects typified by bile canaliculi dilatation and reduced bile acid efflux within 2h and dose-dependent enhanced caspase-3 activity within 24h. PRAs induced the highest cholestatic effects at non cytotoxic concentrations. Then, molecular events involved in these lesions were analyzed. Early accumulation of misfolded proteins revealed by thioflavin-T fluorescence and associated with phosphorylation of the unfolded protein response sensors, eIF2α and/or IRE1α, was evidenced with all tested hepatotoxic antibiotics. Inhibition of ER stress markedly restored bile acid efflux and prevented bile canaliculi dilatation. Downstream of ER stress, ROS were also generated with high antibiotic concentrations. The protective HSP27-PI3K-AKT signaling pathway was activated only in PRA-treated cells and its inhibition increased ROS production and aggravated caspase-3 activity. Overall, our results demonstrate that (i) various antibiotics reported to cause cholestasis and hepatocellular injury in the clinic can also induce such effects in in vitro human hepatocytes; (ii) PRAs cause the strongest cholestatic effects in the absence of cytotoxicity; (iii) cholestatic features occur early through ER stress; (iv) cytotoxic lesions are observed later through ER stress-mediated ROS generation; and (v) activation of the HSP27-PI3K-AKT pathway protects from cytotoxic damage induced by PRAs only.


Assuntos
Antibacterianos/efeitos adversos , Apoptose , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colestase/metabolismo , Estresse do Retículo Endoplasmático , Hepatócitos/fisiologia , Estresse Oxidativo , Antibacterianos/administração & dosagem , Caspase 3/metabolismo , Linhagem Celular , Colestase/induzido quimicamente , Endorribonucleases/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo
12.
Toxicol Sci ; 161(1): 48-57, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029322

RESUMO

A dynamic model based on ordinary differential equations that describes uptake, basolateral and canalicular export of taurocholic acid (TCA) in human HepaRG cells is presented. The highly reproducible inter-assay experimental data were used to reliably estimate model parameters. Primary human hepatocytes were similarly evaluated to establish a mathematical model, but with notably higher inter-assay differences in TCA clearance and bile canaliculi dynamics. By use of the HepaRG cell line, the simultaneous TCA clearance associated to basolateral uptake, canalicular and sinusoidal efflux, was predicted. The mathematical model accurately reproduced the dose-dependent inhibition of TCA clearance in the presence and absence of the prototypical cholestatic drugs cyclosporine A (CsA) and chlorpromazine. Rapid inhibition of TCA clearance and recovery were found to be major characteristics of CsA. Conversely, the action of chlorpromazine was described by slow onset of inhibition relative to inhibition of TCA clearance by CsA. The established mathematical model, validated by the use of these 2 prototypical cholestatic drugs and the integration of bile canalicular dynamics, provides an important development for the further study of human hepatobiliary function, through simultaneous temporal and vectorial membrane transport of bile acids in drug-induced cholestasis.


Assuntos
Ácidos e Sais Biliares/metabolismo , Hepatócitos/metabolismo , Modelos Teóricos , Transporte Biológico , Linhagem Celular , Clorpromazina/metabolismo , Clorpromazina/farmacologia , Ciclosporina/metabolismo , Ciclosporina/farmacologia , Eliminação Hepatobiliar , Hepatócitos/efeitos dos fármacos , Humanos , Cinética , Cultura Primária de Células
13.
Drug Metab Dispos ; 45(12): 1292-1303, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28928138

RESUMO

Drug-induced intrahepatic cholestasis is characterized by cellular accumulation of bile acids (BAs), whose mechanisms remain poorly understood. The present study aimed to analyze early and progressive alterations of BA profiles induced by cyclosporine A, chlorpromazine, troglitazone, tolcapone, trovafloxacin, and tacrolimus after 4-hour, 24-hour, and 6-day treatments of differentiated HepaRG cells. In BA-free medium, the potent cholestatic drugs cyclosporine A, chlorpromazine, and troglitazone reduced endogenous BA synthesis after 24 hours, whereas the rarely cholestatic drugs tolcapone, trovafloxacin, and tacrolimus reduced BA synthesis only after 6 days. In the presence of physiologic serum BA concentrations, cyclosporine A, chlorpromazine, and troglitazone induced early and preferential cellular accumulation of unconjugated lithocholic, deoxycholic, and chenodeoxycholic acids that increased 8- to 12-fold and 47- to 50-fold after 24 hours and 6 days, respectively. Accumulation of these hydrophobic BAs resulted from strong inhibition of amidation, and in addition, for lithocholic acid reduction of its sulfoconjugation, and was associated with variable alterations of uptake and efflux transporters. Trovafloxacin also caused BA accumulation, especially after 6 days, whereas tolcapone and tacrolimus were still without effect. However, when exogenous BAs were added to the medium at cholestatic serum concentrations, a 6-day treatment with all drugs resulted in cellular BA accumulation with higher folds of chenodeoxycholic and lithocholic acids. At the tested concentration, tolcapone had the lowest effect. These results bring the first demonstration that major cholestatic drugs can cause preferential and progressive in vitro cellular accumulation of unconjugated toxic hydrophobic BAs and bring new insights into mechanisms involved in drug-induced cellular accumulation of toxic BAs.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colestase/metabolismo , Amidas/metabolismo , Linhagem Celular , Ácido Quenodesoxicólico/metabolismo , Colestase/induzido quimicamente , Ácido Desoxicólico/metabolismo , Humanos , Ácido Litocólico/metabolismo , Fígado/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Sulfatos/metabolismo , Simportadores/metabolismo , Ácido Taurocólico/metabolismo
14.
Sci Rep ; 7(1): 1815, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28500348

RESUMO

The penicillinase-resistant antibiotics (PRAs), especially the highly prescribed flucloxacillin, caused frequent liver injury via mechanisms that remain largely non-elucidated. We first showed that flucloxacillin, independently of cytotoxicity, could exhibit cholestatic effects in human hepatocytes in the absence of an immune reaction, that were typified by dilatation of bile canaliculi associated with impairment of the Rho-kinase signaling pathway and reduced bile acid efflux. Then, we analyzed the sequential molecular events involved in flucloxacillin-induced cholestasis. A crucial role of HSP27 by inhibiting Rho-kinase activity was demonstrated using siRNA and the specific inhibitor KRIBB3. HSP27 activation was dependent on the PKC/P38 pathway, and led downstream to activation of the PI3K/AKT pathway. Other PRAs induced similar cholestatic effects while non PRAs were ineffective. Our results demonstrate that PRAs can induce cholestatic features in human hepatocytes through HSP27 activation associated with PKC/P38 and PI3K/AKT signaling pathways and consequently support the conclusion that in clinic they can cause a non-immune-mediated cholestasis that is not restricted to patients possessing certain genetic determinants.


Assuntos
Colestase/etiologia , Colestase/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Inibidores de beta-Lactamases/efeitos adversos , Animais , Ácidos e Sais Biliares/metabolismo , Linhagem Celular , Sobrevivência Celular , Citocinas/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Fosforilação , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Quinases Associadas a rho/metabolismo
15.
Toxicol Sci ; 157(2): 451-464, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369585

RESUMO

Several endothelin receptor antagonists (ERAs) have been developed for the treatment of pulmonary arterial hypertension (PAH). Some of them have been related to clinical cases of hepatocellular injury (sitaxentan [SIT]) and/or cholestasis (bosentan [BOS]). We aimed to determine if ambrisentan (AMB) and macitentan (MAC), in addition to BOS and SIT, could potentially cause liver damage in man by use of human HepaRG cells. Our results showed that like BOS, MAC-induced cytotoxicity and cholestatic disorders characterized by bile canaliculi dilatation and impairment of myosin light chain kinase signaling. Macitentan also strongly inhibited taurocholic acid and carboxy-2',7'-dichlorofluorescein efflux while it had a much lower inhibitory effect on influx activity compared to BOS and SIT. Moreover, these three drugs caused decreased intracellular accumulation and parallel increased levels of total bile acids (BAs) in serum-free culture media. In addition, all drugs except AMB variably deregulated gene expression of BA transporters. In contrast, SIT was hepatotoxic without causing cholestatic damage, likely via the formation of reactive metabolites and AMB was not hepatotoxic. Together, our results show that some ERAs can be hepatotoxic and that the recently marketed MAC, structurally similar to BOS, can also cause cholestatic alterations in HepaRG cells. The absence of currently known or suspected cases of cholestasis in patients suffering from PAH treated with MAC is rationalized by the lower therapeutic doses and Cmax, and longer receptor residence time compared to BOS.


Assuntos
Colestase/induzido quimicamente , Antagonistas dos Receptores de Endotelina/toxicidade , Hepatócitos/efeitos dos fármacos , Receptores de Endotelina/metabolismo , Ácidos e Sais Biliares/metabolismo , Canalículos Biliares/efeitos dos fármacos , Canalículos Biliares/metabolismo , Canalículos Biliares/patologia , Miosinas Cardíacas/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colestase/metabolismo , Colestase/patologia , Relação Dose-Resposta a Droga , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Cadeias Leves de Miosina/metabolismo
16.
Drug Metab Dispos ; 44(11): 1780-1793, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27538918

RESUMO

Intrahepatic cholestasis represents 20%-40% of drug-induced injuries from which a large proportion remains unpredictable. We aimed to investigate mechanisms underlying drug-induced cholestasis and improve its early detection using human HepaRG cells and a set of 12 cholestatic drugs and six noncholestatic drugs. In this study, we analyzed bile canaliculi dynamics, Rho kinase (ROCK)/myosin light chain kinase (MLCK) pathway implication, efflux inhibition of taurocholate [a predominant bile salt export pump (BSEP) substrate], and expression of the major canalicular and basolateral bile acid transporters. We demonstrated that 12 cholestatic drugs classified on the basis of reported clinical findings caused disturbances of both bile canaliculi dynamics, characterized by either dilatation or constriction, and alteration of the ROCK/MLCK signaling pathway, whereas noncholestatic compounds, by contrast, had no effect. Cotreatment with ROCK inhibitor Y-27632 [4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride] and MLCK activator calmodulin reduced bile canaliculi constriction and dilatation, respectively, confirming the role of these pathways in drug-induced intrahepatic cholestasis. By contrast, inhibition of taurocholate efflux and/or human BSEP overexpressed in membrane vesicles was not observed with all cholestatic drugs; moreover, examples of noncholestatic compounds were reportedly found to inhibit BSEP. Transcripts levels of major bile acid transporters were determined after 24-hour treatment. BSEP, Na+-taurocholate cotransporting polypeptide, and organic anion transporting polypeptide B were downregulated with most cholestatic and some noncholestatic drugs, whereas deregulation of multidrug resistance-associated proteins was more variable, probably mainly reflecting secondary effects. Together, our results show that cholestatic drugs consistently cause an early alteration of bile canaliculi dynamics associated with modulation of ROCK/MLCK and these changes are more specific than efflux inhibition measurements alone as predictive nonclinical markers of drug-induced cholestasis.


Assuntos
Canalículos Biliares/metabolismo , Colestase Intra-Hepática/metabolismo , Fígado/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Quinases Associadas a rho/metabolismo , Amidas/farmacologia , Ácidos e Sais Biliares/metabolismo , Canalículos Biliares/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Proteínas de Transporte/metabolismo , Linhagem Celular , Colestase Intra-Hepática/induzido quimicamente , Humanos , Fígado/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ácido Taurocólico/metabolismo
17.
Toxicol Lett ; 258: 71-86, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27313093

RESUMO

The role of reactive metabolites and inflammatory stress has been largely evoked in idiosyncratic hepatotoxicity of diclofenac (DCF); however mechanisms remain poorly understood. We aimed to evaluate the influence of liver cell phenotype on the hepatotoxicity of DCF combined or not with TNF-α using differentiated and undifferentiated HepaRG cells, and for comparison, HepG2 cells. Our results demonstrate that after a 24h-treatment metabolizing HepaRG cells were less sensitive to DCF than their undifferentiated non-metabolizing counterparts as shown by lower oxidative and endoplasmic reticulum stress responses and lower activation of caspase 9. Differentiated HepaRG cells were also less sensitive than HepG2 cells. Their lower sensitivity to DCF was related to their high content in glutathione transferases. DCF-induced apoptotic effects were potentiated by TNF-α only in death receptor-expressing differentiated HepaRG and HepG2 cells and were associated with marked activation of caspase 8. TNF-α co-treatment did not aggravate DCF-induced cholestatic features. Altogether, our results demonstrate that (i) lower sensitivity to DCF of differentiated HepaRG cells compared to their non-metabolically active counterparts was related to their high detoxifying capacity, giving support to the higher sensitivity of nonhepatic tissues than liver to this drug; (ii) TNF-α-potentiation of DCF cytotoxicity occurred only in death receptor-expressing cells.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Diclofenaco/farmacologia , Resistência a Medicamentos , Hepatócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Receptor fas/agonistas , Anti-Inflamatórios não Esteroides/agonistas , Anti-Inflamatórios não Esteroides/metabolismo , Biotransformação/efeitos dos fármacos , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Diclofenaco/agonistas , Diclofenaco/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/metabolismo , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Cinética , Microscopia de Contraste de Fase , Estresse Oxidativo/efeitos dos fármacos , Receptor fas/metabolismo
18.
Sci Rep ; 6: 24709, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27169750

RESUMO

Intrahepatic cholestasis represents a frequent manifestation of drug-induced liver injury; however, the mechanisms underlying such injuries are poorly understood. In this study of human HepaRG and primary hepatocytes, we found that bile canaliculi (BC) underwent spontaneous contractions, which are essential for bile acid (BA) efflux and require alternations in myosin light chain (MLC2) phosphorylation/dephosphorylation. Short exposure to 6 cholestatic compounds revealed that BC constriction and dilation were associated with disruptions in the ROCK/MLCK/myosin pathway. At the studied concentrations, cyclosporine A and chlorpromazine induced early ROCK activity, resulting in permanent MLC2 phosphorylation and BC constriction. However, fasudil reduced ROCK activity and caused rapid, substantial and permanent MLC2 dephosphorylation, leading to BC dilation. The remaining compounds (1-naphthyl isothiocyanate, deoxycholic acid and bosentan) caused BC dilation without modulating ROCK activity, although they were associated with a steady decrease in MLC2 phosphorylation via MLCK. These changes were associated with a common loss of BC contractions and failure of BA clearance. These results provide the first demonstration that cholestatic drugs alter BC dynamics by targeting the ROCK/MLCK pathway; in addition, they highlight new insights into the mechanisms underlying bile flow failure and can be used to identify new predictive biomarkers of drug-induced cholestasis.


Assuntos
Canalículos Biliares/efeitos dos fármacos , Miosinas Cardíacas/metabolismo , Clorpromazina/farmacologia , Ciclosporina/farmacologia , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Quinases Associadas a rho/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Ácidos e Sais Biliares/metabolismo , Canalículos Biliares/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Microscopia de Fluorescência , Miosina Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Imagem com Lapso de Tempo , Proteína da Zônula de Oclusão-1/metabolismo
19.
Toxicol Sci ; 147(2): 573-87, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26198044

RESUMO

Alteration of bile acid (BA) profiles and secretion by cholestatic drugs represents a major clinical issue. Species differences exist in BA composition, synthesis, and regulation; however presently, there is no in vitro reproducible cell model to perform studies on BAs in humans. We have evaluated the capacity of the human HepaRG cell line to synthesize, conjugate, and secrete BAs, and analyzed changes in BA content and profile after cyclosporine A (CsA) treatment. Our data show that HepaRG cells produced normal BAs at daily levels comparable, though in different proportions, to those measured in primary human hepatocytes. A 4-h treatment with CsA led to BA accumulation and profile changes associated with occurrence of cholestatic features, while after 24 h BAs were decreased in cell layers and increased in media. The latter effects resulted from reduced function of BA uptake transporter (Na(+)-taurocholate cotransporting polypeptide), reduced expression of BA metabolizing enzymes, including cytochrome P4507A1, cytochrome P4508B1, and cytochrome P45027A1, and induction of alternative basolateral transporters. Noteworthy, HepaRG cells incubated in a 2% serum-supplemented medium showed dose-dependent accumulation of the cytotoxic BA lithocholic acid in a nonsulfoconjugated form associated with early inhibition of the canalicular transporter MRP2 and sulfotransferase 2A1. In summary, our data bring the first demonstration that an in vitro human liver cell line is able to produce and secrete conjugated BAs, and to accumulate endogenous BAs transiently, concomitantly to occurrence of various other cholestatic features following CsA treatment. Retention of the hydrophobic lithocholic acid supports its toxic role in drug-induced cholestasis. Overall, our results argue on the suitability of HepaRG cells for investigating mechanisms involved in the development of the disease.


Assuntos
Ácidos e Sais Biliares/toxicidade , Ciclosporina/farmacologia , Hepatócitos/efeitos dos fármacos , Ácidos e Sais Biliares/análise , Ácidos e Sais Biliares/metabolismo , Western Blotting , Linhagem Celular , Colestanotriol 26-Mono-Oxigenase/metabolismo , Colesterol 7-alfa-Hidroxilase/metabolismo , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Hepatócitos/química , Humanos , Esteroide 12-alfa-Hidroxilase/metabolismo
20.
Toxicol Sci ; 145(1): 157-68, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25690737

RESUMO

The role of hepatobiliary transporters in drug-induced liver injury remains poorly understood. Various in vivo and in vitro biological approaches are currently used for studying hepatic transporters; however, appropriate localization and functional activity of these transporters are essential for normal biliary flow and drug transport. Human hepatocytes (HHs) are considered as the most suitable in vitro cell model but erratic availability and inter-donor functional variations limit their use. In this work, we aimed to compare localization of influx and efflux transporters and their functional activity in differentiated human HepaRG hepatocytes with fresh HHs in conventional (CCHH) and sandwich (SCHH) cultures. All tested influx and efflux transporters were correctly localized to canalicular [bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), multidrug resistance protein 1 (MDR1), and MDR3] or basolateral [Na(+)-taurocholate co-transporting polypeptide (NTCP) and MRP3] membrane domains and were functional in all models. Contrary to other transporters, NTCP and BSEP were less abundant and active in HepaRG cells, cellular uptake of taurocholate was 2.2- and 1.4-fold and bile excretion index 2.8- and 2.6-fold lower, than in SCHHs and CCHHs, respectively. However, when taurocholate canalicular efflux was evaluated in standard and divalent cation-free conditions in buffers or cell lysates, the difference between the three models did not exceed 9.3%. Interestingly, cell imaging showed higher bile canaliculi contraction/relaxation activity in HepaRG hepatocytes and larger bile canaliculi networks in SCHHs. Altogether, our results bring new insights in mechanisms involved in bile acids accumulation and excretion in HHs and suggest that HepaRG cells represent a suitable model for studying hepatobiliary transporters and drug-induced cholestasis.


Assuntos
Hepatócitos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Linhagem Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA